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Abstract

We introduce a new family of equivalence tests for a fully specified
continuous distribution on R. The tests are based on the weighted Lo-
distance between cumulative distribution functions. The asymptotic dis-
tribution of the test statistic is derived using the functional delta method.
The local asymptotic optimality of the proposed tests is shown. An easy-
to-compute estimator for the asymptotic variance of the test statistic is
provided. The tests can be carried out using the asymptotic approxima-
tion or the percentile-t bootstrap method. For the special case of the
Anderson-Darling distance, a comprehensive simulation study of finite
sample properties is performed. A practical method of finding appropri-

ate values for the tolerance parameter is given.
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1 Introduction

A common task in applied statistics is to evaluate whether observed data con-
form to a specified distribution. For this purpose, goodness-of-fit tests are very
often performed in practice. Goodness-of-fit tests are tailored to establish lack of
fit to a hypothetical distribution. Therefore, goodness-of-fit tests are considered
inappropriate for showing that observed data are consistent with a given prob-
ability distribution, see Hodges and Lehmann (1954), Berger and Delampady
(1987), Lindsay and Liu (2009) and more recently Rao and Lovric (2016).
Equivalence tests are designed specifically to show that the observed data
are sufficiently close to a given probability distribution, see Wellek (2010) for an
overview. We consider equivalence tests for univariate continuous probability
distributions on R based on the weighted L,-distance between cumulative dis-
tribution functions (CDFs). The observed data X,..., X, are identically and
independently distributed accordingly to an unknown continuous CDF F on R,
where n € N denotes the sample size. Let G denote the CDF of the hypothetical
univariate continuous distribution. The weighted Lo-distance between F' and
Gis d(F,G) = [(F - G)* dp, where p is a non-negative continuous measure
on R. The distance d (F,G) is very popular in the field of the goodness-of-fit
testing, see Baringhaus, Ebner, and Henze (2017) for an overview. The CDF F

can be efficiently estimated by the empirical CDF Fj,.

Example 1. The famous Cramér-von Mises distance d (F,G) = [ (F — G)*dG
is a special case with y = G. The popular Anderson-Darling distance d (F,G) =

J (G‘I21 ~dG is another special case with dp = G(ll—G)dG'

There are first applications of distance d (F, G) for equivalence testing. Bar-
inghaus and Henze (2017) and Ostrovski (2022) use Cramér-von Mises distance
to test equivalence to a fully specified univariate continuous distribution. Bar-

inghaus, Gaigall, and Thiele (2018) apply the Cramér-von Mises distance in
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equivalence tests for uniformity on an unknown interval so the interval bound-
aries need to be estimated. The equivalence test problem is Hy = {d (F,G) > ¢}
and H; = {d (F,G) < €}, where ¢ > 0 is a tolerance parameter. If Hy can be
rejected for an appropriate value of € then the true underlying CDF F' is suf-
ficiently close to the given CDF G. Using the empirical CDF F,, as a plug-in

estimator of F', we obtain the test statistic

T (Fn) = Vn(d(F,,G) —¢)

The distance d (F,,G) can be calculated by numerical integration. It can be

transformed as follows to facilitate the computation:

d(Fn,G)=/(F G dp = Z/X“*” (E_G) dj

X3

where X(q) < ... < X(,) are the order statistics, X9y = —oo and X, 1) = +o0.

X i )
The summands fx(ﬁ)*l) (%

+ - G)2 dp have a closed-form expression in the case

of the Cramér-von Mises and Anderson-Darling distances. The time-proven

Crameér-von Mises test statistic is

1 2
nd(F, 12”+Z<U()— o )

where U; = G (X;) for all @ and Uy < ... < Ug,) are the order statistics.

Presented in a similar way, the Anderson-Darling test statistic is

"2 —1
nd (F,,G) = —n — Z Zn []n (U(i)) + In (1 — U(n—i—l—i))}

=1
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2 Asymptotic theory

In this section, the asymptotic distribution of the test statistic 1" (F},) is derived
using the functional delta method. Then we show that the equivalence tests
based on T (F},) are locally asymptotically most powerful (LAMP), see van der
Vaart (1998, Chapter 25) for the theory of LAMP tests.

Proposition 2. The statistical functional k : Ly () — R F — d(F,G) is
Hadamard differentiable everywhere. The derivative of k at F' € Lo (1) is the

continuous linear function Ly (u) — R,h — [2(F — G) hdp.

Proof. Let (t,)nen be a sequence in R so that ¢, > 0 for all n € N and ¢,, — 0
for n — oco. Let (hy),, oy be a sequence in Ly (1) so that [ (h, — h)? dp — 0 for

n — o0o. We show that

%(/(F+tnhn—G)Qdu—/(F—G)Zdu>—2/h(F—G)du
= 2 (hn—h)(F—G)d;L—Irtn/hidu

converges to 0 for n — oo. Applying the Cauchy-Schwartz inequality to the first

summand, we obtain

2
(/(hn—m (F—G)du> < /(%—hﬁdu/(F—G)deo
for n — co. The second summand ¢,, [ h2dp converges to 0 for n — oo because
tn, = 0 and [h2dp — [ h2du. O

Corollary 3. Let F be the true underlying CDF of the observed data. If
d (F,G) = ¢ then the test statistic T (F},) converges weakly to 2 [ (F — G) Gpdp,

where G is a F-Brownian bridge process.

Proof. By Donsker’s theorem (see van der Vaart (1998, p. 266, Theorem 19.3)),
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Vn (F, — F) converges weakly to Gp. Applying the functional delta method
(see van der Vaart (1998, p. 287, Theorem 20.8), we obtain the asymptotic

distribution of T (F},) = v/n (d (F,,,G) — d (F,Q)). O

Example 4. For the Cramér-von Mises distance, the test statistic T (F,,) con-
verges weakly to 2 [ (F — G) GrdG. In the case of the Anderson-Darling dis-

tance, T (F),) converges weakly to 2 [ =5 G G) == -GrdG.

Next, we provide a short introduction to LAMP tests. The local asymptotic
optimality is based on the notion of the locally smooth parametric submodels
and the corresponding bounds on the asymptotic test power. Let F € Lo (1) be
a fixed CDF so that d (Fy,G) = e. Let [0,0] — Lo (i) ,t — F} be a parametric
submodel for § > 0. Assume that the submodel is differentiable at Fj in the
mean square, see van der Vaart (1998, p. 362). We consider all asymptotic a-
level tests for the equivalence test problem. Then for any sequence (Ft / \/g) el
and t > 0, there is an asymptotic upper bound on the power of asymptotic
a-level tests at Fy, s, see van der Vaart (1998, p. 384, Theorem 25.44). An
asymptotic a-level test is LAMP at F if the test power attains this upper
bound for all submodels that are differentiable at Fj in the mean square. Next,
we derive the efficient influence function k of the statistical functional x. Then
we show that the asymptotic distributions of the test statistic 7' (F},) and S,, =
NI k (X;) coincide. This implies that the asymptotic a-level tests based

on the statistic T (F),) are LAMP at any CDF Fy € Lo () with d (Fp, G) = e.

Proposition 5. The efficient influence function of the functional k at Fy is

2) =2 [ (Fy () = G (5)) (1oos] (2) = Fo (5)) ds 5).

Proof. Let [0,8] — Lo (u),t — F; be a parametric submodel for 6 > 0 that is
differentiable at F{ in the mean square with a tangent h. By van der Vaart

(1998, p. 363, Lemma 25.14), the tangent & is in Ly (Fy) and [ hdFy = 0.
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Proposition 2 from Bickel, Klaassen, Ritov, and Wellner (1993, p. 457) implies
= [h(x)1(_so,s) (@) dFy (x) at t = 0. With this result we obtain
01 (F) =2 [ (Fy (5) = G (5)) [ h (2) 1 _oors] () dFp (2) dpu (s) at £ = 0.
By Fubini’s theorem, we conclude
Fy) = [h(z)[2[(Fo(s) = G(5) L—oos (@) dp(s)] dFy (z) = [ hRdF,
at t = 0, where the last equality is due to
[ h(@) [ (o () ~ G (s)) Fo (s) dya ()] dFo (2) = [ (Fo — G) Fody [ hdFy =0
Obviously, [ &dFy equals zero. Due to |1(_s 5 (¥) — Fo (s)| < 1 and Fy,G €
Ly (p) C Lq(p), we obtain |z < 2 [|Fy — G|dp < oco. Consequently, & €
Lo (Fp) . Similar to Example 25.16 of van der Vaart (1998, p. 364), we can
construct a submodel [0,] — Lo (u),t — Fy for 6 > 0 that is differentiable
at Fp in the mean square with a tangent x. Therefore, & is the efficient score

function of k at Fy by definition, see van der Vaart (1998, Section 25.4). O

Proposition 6. Let 02 = 02 (X1,...,X,) be a consistent estimator of the
asymptotic variance of the test statistic T (F),). Let (c,),cy be a sequence of
critical values so that ¢, — q., where q, denotes the lower a-quantile of the
standard normal distribution. Then the test, that rejects Hy if T (F},) < qa0n,

is LAMP at any Fy with d (Fy,G) = €.

Proof. By Theorem 25.44 and Lemma 25.45 of van der Vaart (1998, p. 384),
it is sufficient to show that the asymptotic distributions of T (F},) and S,, are
equal under Fy, where S, f ST LE(X) =2 [ (Fy - G)vn(F, — Fy)dp.
By Donsker’s theorem, /n (F,, — F) converges weakly to Gg,. The continuous
mapping theorem implies that S,, converges weakly to 2 [ (Fy — G) Gg,dp. The

asymptotic distribution of T}, is given in Corollary 3. U



Knodel walks in a Bohm-Hornik Environment

3 Asymptotic and bootstrap-based tests

In this section, we derive an estimator for the asymptotic variance of the test
statistic. The asymptotic and bootstrap-based tests are described and the

asymptotic optimality of these tests is shown.

Proposition 7. Suppose that du = wdH, where H : R — R is a continu-
ous CDF and w : R — R is a continuous function. Then the distribution of
2 [ (F — G)Gpdu is normal with mean 0 and variance

o (F)=4[ [ K (s,t,F)dH (s)dH (t), where

K (z,y, F) = (F(2) = G (2)) w (z) (F(y) = G (y) w(y) (F(z Ay) = F(x) F(y))

Proof. Using the identity H ! o H (z) = x, we obtain

2[(F—GQ)Grdu=2 [, (FoH ' —GoH Y woH 'Gpoy-1d), where A de-
notes Lebesgue measure. The process (FoH ' —GoH ')wo H 'Gpopy—
is Gaussian with zero means and covariance function K (H‘l(s), H' (t) ,F).
By Shorack and Wellner (2009, p. 42, Proposition 2.2.1), the distribution of

2 [ (F — G) Gpdy is normal with mean 0 and variance

4f01 fol K (H_l(s)aHi

1

OF F) dsdt =4 [ [ K (s,t, F)dH (s) dH (¢). O

Corollary 8. Let f, = ;((((:)“) (£ —Gt)w(t)dH(t) for k=0,...,n, where
Xy = —oo and X(,41) = +oo. Under assumptions of Proposition 7, the

estimator of the asymptotic variance of the test statistic

s consistent almost surely.

Proof. The function F +— o2 (F) is continuous by Proposition 7 and F,, — F

almost surely for n — oo by Glivenco-Cantelly theorem. Therefore, o2 (F,) —
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o2 (F) almost surely by the continuous mapping theorem. Observe that,

X(kt1 X141
ZZ /< )/( 'K K (s,t,F,) dH (s) dH (t)

k=01=0 “ X&) X

Then the closed formula (3.1) is derived by straightforward algebra and Fubini’s

theorem. 0

Example 9. Let Uy = G(X(k)) for all k = 1,...,n. Let Uyg = 0 and
Unt+1) = 1. In the case of the Cramér-von Mises distance, we get a closed-form

solution for fx as follows

U .
fr = fj((((:)ﬂ) ( G( ) féi(:)ﬂ) (n )da:' _ %:L‘ 22 Uizjl) using

the substitution z = G (t). For the Anderson-Darling distance we obtain

fo= J3 (5 =G @) dG (1) = £ (125) +m(1 - a)

Utk+1)

Ur)

The asymptotic test rejects Hg if T (F},) < o0 (Fpn), where g, is the lower
a-quantile of the standard normal distribution. The minimum tolerance pa-
rameter, for which the asymptotic test can reject Ho, i8 emin (Fp) = d (Fp, G) —
\/Lﬁqaa (F},). Under assumptions of Proposition 7, the asymptotic test is LAMP
by Proposition 6.

Alternatively, the variance of the test statistic T'(F},) can be estimated by
empirical bootstrap. Let 2 denote the usual bootstrap estimator of the variance
of T (F,). The estimator 62 can be computed by sampling with replacement,
from the original observations to any degree of accuracy. The bootstrap estima-
tor 62 replaces o2 (F,,) in the asymptotic test. Otherwise, everything remains
the same. The estimator 62 is consistent by van der Vaart (1998, p. 333, The-
orem 23.7) if the asymptotic variance of the test statistic 7" (F},) is finite. Then
the asymptotic test that uses the bootstrap estimator 62 instead of o2 (F},) is

LAMP by Proposition 6.

In order to improve the finite sample performance, we consider the bootstrap
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based test that implements the percentile-t bootstrap method, see van der Vaart
(1998, Chapter 25) for details. Let F), denote the empirical CDF of the usual
bootstrap sample with replacement. The percentile-t bootstrap method approx-
imates the unknown true distribution of the test statistic 7" (F3,) by the condi-
tional distribution of (T (Fn> T (F, )) /o ( ) given F,,, which can be easily
simulated by sampling with replacement. Let ¢, (F),) denote the lower empirical
a-quantile of (T (Fn) T (F, )) /o < > given F,,. The percentile-t bootstrap
test rejects Ho if T (F,,) < 4o (F),) o (Fy,). Under assumptions of Proposition 7,
the quantile ¢, (F),) converges to g, by van der Vaart (1998, p. 333, Theorem
23.7 and Theorem 23.9). Therefore, the percentile-t bootstrap test is LAMP by
Proposition 6. The minimum tolerance parameter ,,;,, for which the percentile-

t bootstrap test can reject Hy, equals d (F,,,G) — \/Lﬁcja (Fn) o (Fy).

4 Simulation Study

In this section, the finite sample properties of the proposed equivalence tests
are studied by means of simulation. We consider the Anderson-Darling distance
only because an extensive simulation study of the equivalence tests based on the
Cramér-von Mises distance can be found in Ostrovski (2022). Let U denote the
CDF of the uniform distribution on [0, 1]. For the Anderson-Darling distance,
it is sufficient to consider the case G = U only because the identity

d(RG):/é( dG / FOG - )sz

holds for any continuous CDF G. The tests are implemented in R and the com-
plete simulation study is performed in R Studio. The source code is freely avail-
able under https://github.com/TestingEquivalence/EquivalenceAD. We

use the following shorthand notation for the equivalence tests considered:
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AT is the asymptotic test which uses the estimator o2 (F},) of the asymptotic

variance of the test statistic.

ATBYV is the asymptotic test which uses the bootstrap estimator 62 of the

variance of the test statistic.
PTBT is the test based on the percentile-t bootstrap method.

All tests are performed at the nominal level 0.05. The test power is calculated
using 1000 simulations in all cases. The number of bootstrap samples is 200 for

ATBV and PTBT.

4.1 Test power at U and appropriate values of the toler-

ance parameter ¢

To gain insight into how to determine appropriate values for the tolerance pa-
rameter £, we calculate the test power at U. Table 1 displays the value of the
tolerance parameter € as a function of the test power at U for different sample
sizes n. For a fixed test power, the corresponding values of ¢ are similar for AT,
ATBV and PTBT. For a fixed sample size n, the test power at U decreases as
€ is reduced.

Given a specific sample size, an appropriate value of the tolerance parameter
€ can be determined by fixing the minimum acceptable test power at U. For
example, the test power at U should be at least 0.9 and the sample size is 200.

Then the appropriate value of ¢ is 0.025, see Table 1.

4.2 Type I error rates

The test power is computed at a number of different boundary points of Hy
to evaluate type I error rates. The CDF F of any boundary point under con-

sideration is constructed as a linear combination F' = wB + (1 — w) U similar
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Table 1: Tolerance parameter € as a function of the test power.

Test power n AT ATBV PTBT
0.9 50 0.091 0.096 0.097
100 0.047  0.049 0.051

200 0.023  0.025 0.025

0.8 50  0.070  0.078 0.062
100 0.036 0.040 0.032

200 0.018 0.020 0.017

0.7 50 0.057 0.066  0.042
100 0.030 0.034  0.022

200 0.015 0.017  0.011

to Baringhaus and Henze (2017) and Ostrovski (2022), where w € [0,1] and
B is such CDF that d(B,U) > ¢. CDFs B are selected from the extensive
literature on goodness-of-fit tests for uniformity and are also considered in Os-
trovski (2022). The beta distributions with different parameters and Stephens
alternatives are used as CDFs B, see Table 2 for details. The Stephens alter-
natives consist of three different parametric CDFs A(k), B(k) and C(k), where
the parameter k>0 controls the shape of CDF, see Stephens (1974) for details
and exact formulas of CDFs. The test power at the different boundary points
is summarized in Table 2 for the sample size 200. Similar simulation results are
obtained for sample sizes 50 and 100. The tolerance parameter e equals 0.025,
so that the test power at U is over 0.9 for AT, ATBV and PTBT, see Table 1.

The test power of all three tests varies considerably from point to point
and deviates significantly from the nominal value 0.05. AT is not conservative
at many boundary points and the power of AT is the most variable. PTBT
has some non-conservative tendencies, as the power of PTBT is often above
the nominal level. The power of ATBV is closer to the nominal level at most
boundary points compared to AT and PTBT. Therefore, ATBV performs best
compared to AT and PTBT, although it is not conservative at some boundary

points considered.
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Table 2: Test power at the boundary points of Hy. The tolerance parameter is
e = 0.025.

CDF B AT ATBV PTBT | CDF B AT ATBV PTBT
Beta(0.5, 0.5) 0.026  0.016 0.063 A(2.5) 0.070 0.066 0.057
Beta(0.5, 1.0) 0.053 0.044  0.059 A(3) 0.070  0.058 0.055
Beta(0.5, 1.5) 0.090  0.065 0.077 | B(0.25) 0.041 0.023 0.074
Beta(0.5, 2.0) 0.107  0.087  0.105 B(0.5) 0.021 0.015 0.038
Beta(1, 1.5)  0.068  0.061 0.056 B(2) 0.031  0.023 0.060
Beta(1, 2) 0.096 0.087  0.076 B(2.5) 0.025 0.022 0.058
Beta(1.5,2)  0.057  0.046 0.067 B(3) 0.031  0.026 0.065
Beta(2, 2) 0.030  0.024 0.059 | C(0.25) 0.036 0.028 0.059

A(0.25) 0.090 0.057  0.102 C(0.5) 0.043 0.030 0.079

A(0.5) 0.081 0.059 0.081 | C(2) 0.017 0.005 0.047

A(1.5) 0.077 0.068 0.061 | C(2.5) 0.018 0.012  0.033

A(2) 0.083 0.070 0.064 | C(3) 0.035 0.022 0.064
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